Optimization of inhibitors of the tyrosine kinase EphB4. 2. Cellular potency improvement and binding mode validation by X-ray crystallography.

نویسندگان

  • Karine Lafleur
  • Jing Dong
  • Danzhi Huang
  • Amedeo Caflisch
  • Cristina Nevado
چکیده

Inhibition of the tyrosine kinase erythropoietin-producing human hepatocellular carcinoma receptor B4 (EphB4) is an effective strategy for the treatment of solid tumors. We have previously reported a low nanomolar ATP-competitive inhibitor of EphB4 discovered in silico by fragment-based high-throughput docking combined with explicit solvent molecular dynamics simulations. Here we present a second generation of EphB4 inhibitors that show high inhibitory potency in both enzymatic and cell-based assays while preserving the appealing selectivity profile exhibited by the parent compound. In addition, respectable levels of antiproliferative activity for these compounds have been obtained. Finally, the binding mode predicted by docking and molecular dynamics simulations is validated by solving the crystal structures of three members of this chemical class in complex with the EphA3 tyrosine kinase whose ATP-binding site is essentially identical to that of EphB4.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure-based optimization of potent and selective inhibitors of the tyrosine kinase erythropoietin producing human hepatocellular carcinoma receptor B4 (EphB4).

The tyrosine kinase EphB4 is an attractive target for drug design because of its recognized role in cancer-related angiogenesis. Recently, a series of commercially available xanthine derivatives were identified as micromolar inhibitors of EphB4 by high-throughput fragment-based docking into the ATP-binding site of the kinase domain. Here, we have exploited the binding mode obtained by automatic...

متن کامل

Myeloproliferative Neoplasms Associated with Mutation in JAK2V617F and Tyrosine Kinase Inhibitors as Therapeutic Strategy

MPNs including a heterogeneous group of clonal or oligoclonal hamtopathies characterized by proliferation and accumulation of mature myeloid cells. JAK2 tyrosine kinase mutation is the most common molecular lesion identified in 90% of cases. JAK2 is involved in EPO signaling pathway, and mutations in it lead to EPO-independent spontaneous phosphorylation. Most tyrosine kinase inhibitors (TKI) a...

متن کامل

2D-QSAR and docking studies of 4-anilinoquinazoline derivatives as epidermal growth factor receptor tyrosine kinase inhibitors

Introduction: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor derivatives play an important role in the treatment of cancer. We aim to construct 2D-QSAR models using various chemometrics using 4-anilinoquinazoline-containing EGFR TKIs. In addition, the binding profile of these compounds was evaluated using a docking study. Materials and Methods: In this study, 122 compounds of...

متن کامل

Molecular dynamics in drug design.

Molecular dynamics (MD) simulations are useful tools for structure-based drug design. We review recent publications in which explicit solvent MD was used at the initial or final stages of high-throughput docking campaigns. In some cases, MD simulations of the protein target have been carried out before docking to generate a conformer of the protein which differs from the available crystal struc...

متن کامل

Discovery of a novel chemotype of tyrosine kinase inhibitors by fragment-based docking and molecular dynamics.

We have discovered a novel chemical class of inhibitors of the EphB4 tyrosine kinase by fragment-based high-throughput docking followed by explicit solvent molecular dynamics simulations for assessment of the binding mode. The synthesis of a single derivative (compound 7) of the hit identified in silico has resulted in an improvement of the inhibitory potency in an enzymatic assay from 8.4 μM t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of medicinal chemistry

دوره 56 1  شماره 

صفحات  -

تاریخ انتشار 2013